Optimization and Coordination of Damping Controls for Optimal Oscillations Damping in Multi-Machine Power System
نویسندگان
چکیده
This paper proposes a novel optimization technique for simultaneous coordinated designing of power system stabilizer (PSS) and static VAR compensator (SVC) as a damping controller in the multi-machine power system. PSO and chaos theory is hybridized to form a chaotic PSO (CPSO), which reasonably combines the population-based evolutionary searching ability of PSO and chaotic searching behavior. The coordinated design problem of PSS and SVC controllers over a wide range of loading conditions are formulated as a multi-objective optimization problem which is the aggregation of the two objectives related to the damping ratio and damping factor. The proposed damping controllers are tested on a weakly connected power system. The effectiveness of the proposed controllers is demonstrated through the eigenvalue analysis and nonlinear time-domain simulation. The results of these studies show that the proposed coordinated controllers have an excellent capability in damping power system interarea oscillations and enhance greatly the dynamic stability of the power system. Moreover, it is superior to both the manually coordinated stabilizers of the PSS and the SVC damping controller.
منابع مشابه
A Robust FACTS Damping Controller Design to Mitigate Interarea Oscillations in a Multi-machine Power System
In this paper, damping of interarea oscillations using simultaneous coordination of static Var compensator (SVC) and power system stabilizer (PSS) is considered. To be effective in damping of oscillations, the best-input signal of power oscillation damper (POD) associated with SVC is selected using Hankel singular values (HSVs), and right-hand plane zeros (RHP-zeros). The 4-machine-2 area...
متن کاملCoordinated Design of PSS and SSSC Damping Controller Considering Time Delays using Biogeography-based Optimization Algorithm
In this paper, a consistent pattern with the optimal coordinated design of PSS and SSSC controller to improve the damping of low frequency oscillations is shown. In this design, sensing and signal transmission time delays are considered as effectiveness parameters. The design problem has been considered an optimization problem and biogeography-based optimization (BBO) algorithm is used for sear...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملA Multi-Objective HBMO-Based New FC-MCR Compensator for Damping of Power System Oscillations
In this paper, a novel compensator based on Magnetically Controlled Reactor with Fixed Capacitor banks (FC-MCR) is introduced and then power system stability in presence of this compensator is studied using an intelligent control method. The problem of robust FC-MCR-based damping controller design is formulated as a multi-objective optimization problem. The multi-objective problem is concocted ...
متن کاملLow Frequency Oscillations Suppression via CPSO based Damping Controller
In this paper, the Unified Power Flow Controller (UPFC) is enhanced with a Chaotic Particle Swarm Optimization (CPSO) Damping Controller in order to mitigate the Low Frequency Oscillations (LFO) in a Single Machine Infinite Bus (SMIB) power system. The designed damping controller is an optimized lead-lag controller, which extracts the speed deviation of the generator rotor and generates the out...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013